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Abstract

This paper considers the existence of the generalized solution to the initial vale problem for a

class of generalized Zakharov equation in dimension one. by a priori integral estimates and

Galerkin method, one has the existence of the global generalized solution to the problem. The

obtained results may be useful for better understanding this generalized Zakharov equation.
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1. Introduction

As well known, in the ineracion of laser-plasma, Zkaharov equation play a important role.

Zakharov equations, derived by Zakharov in 1972 [1]. This system attracted many scientists' wide

interest and attention [2-9, 12, 13]. S. You studied a generalized Zakharov equation and obtained

the existence and uniqueness of the global solutions to initial value problem [14]. Recently, a

quantum modified Zakharov system was derived, by means of the quantum plasma

hydrodynamic model.
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where 1: d dE    is the slowly varying amplitude of the high-frequency electric field, and

1: dn    denotes the fluctuation of the ion-density from its equilibrium. H is the

dimensionless quantum parameter given by the ratio of the ion plasmon and electron thermal

energies.

In this paper, we are interested in studying the following generalized Zakharov system.
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2 2(| | ) ,t xx xxxxiE E H E nE f E E    (1)

2 2| | ,tt xx xxxx xxn n H n E   (2)

with initial data

0 0 1( ,0) ( ), ( ,0) ( ), ( ,0) ( ).tE x E x n x n x n x n x   (3)

where  1 2( , ) ( , ), ( , ), , ( , )NE x t E x t E x t E x t  is an N -dimensional complex valued unknown

functional vector, ( , )n x t is a real-valued unknown function, x .

Now we state the main results of the paper.

Theorem 1. Suppose that

(i) 1
1

2 1
0 0( ) ( ), ( ) ( ), ( ) ( ).x H n x H x HE n     

(ii) ( ) ( ), | ( .) |f C f M     Where 0, 0 4.M   

Then there exists global generalized solution of the Cauchy problem (1)-(3).

1, 2

1

2

1 , 1

1, 31

( , ) ( ; ) ( ; ),

( , ) ( ; ) ( ; ),

( , ) ( ; ) ( ; ).t

E x t L H W H

n x t L H W H

n x t L H W H

    

    

    

 

 

 

 

 

 

To study generalized solution of the system (1)-(3), we transform it into the following form

2 2(| | ) ,t xx xxxxiE E H E nE f E E   (4)

0,t xxn   (5)

2 2| | 0,t xxn H n E     (6)

with initial data

0 0 0( ,0) ( ), ( ,0) ( ), ( ,0) ( ).E x E x n x n x x x    (7)

where 0 satisfying 0 1.xx n 

For the sake of convenience of the following contexts, we set some notations. For 1 q   ,

we denote ( )q dL  the space of all q times integrable functions in d equipped with norm

( )
· q dL 

‖‖ and , ( )s p dH  the Sobolev space with norm , ( )
· s p dH 

‖‖ . If 2p  , we write ( )s dH 

instead of ,2 ( )s dH  . Let ( , ) ( ) ( )
n

f g f x g x dx  , where ( )g x denotes the complex conjugate

function of ( )g x . And we use C to represent various constants that can depend on initial data.

The paper is organized as follows. In Section 2, we make a priori estimates of the problem

(4)-(7). In Section 3, we obtain the existence and uniqueness of the global generalized solution of

the problem (1)-(3) by Galerkin method.
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2. A priori estimates

In this section, we will derive a priori estimates for the solution of the system (4)-(7).

Lemma 1. Suppose that 2
0 ( ) ( )E x L  . Then for the solution of problem(4)-(7) we have

2 2

2 2

0( ) ( )
( , ) .

L L
E Ex t 

 

Proof. Taking the inner product of (4) and E . Since

    2

21 d
Im , , ,

2
Re

d
t t L

iE E E E E
t



 2Im , 0.xx xxxxE H E E 

 2
Im ( ) , 0.nE f E E E 

we get

2

2d
( , ) 0,

d L
E x t

t


we thus get Lemma 1.

Lemma 2. Suppose that 2
0 ( ) ( )E x H  , 1

0 ( ) ( )x H   , 1
0 ( ) ( )n x H  . Then we have

( ) (0).t H H

where

2

2 2

2 2 2

| |2 2 22

0

2
2 2 2

( ) d ( )d d

2 2
,

1 1

2

E

x xxL L

x xL L L

t E H E n E x f x

H
n n

 



   

  

  
H

Proof. Taking the inner products of (4) and tE . Since

   Re , Im , 0,t t t tiE E iE E  

    2

2
Re Re

1 d
, , ,

2 d
xx t x xt x L

E E E E E
t

  

    2

2
22 2 d

Re , Re , ,
2 d

xxxx t xx xxt xx L

H
H E E H E E E

t
   

 
2

2 2

1
Re , d

2

1 d 1
d d ,

2 d 2

t t

t

nE E n E x

n E x n E x
t

  

  



 



 
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 
2

2 2 2

| |

0

1
Re ( ) , ( ) d

2

1 d
( )d d .

2 d

t t

E

f E E E f E E x

f x
t

 

  

 



 



it follows that

2

2 2

| |2 2 2 22

0

d
d ( )d d d .

d

E

x xx tL L
E H E n E x f x n E x

t
           

(8)

Taking the inner products of (6) and tn . Since

  2

21 d
,

2 d
,t L

n n n
t

 

    2

2
22 2, , ,

d

2 d
xx t x xt x L

H
H n n H n n n

t
   

it follows that

2 2

2
2 2 21 d d

d d
2 d 2 d

t t x tL L

H
n x n n E n x

t t
     

(9)

Taking the inner products of (5) and t . Since

    2

21 d
, ,

2 d
xx t x xt x Lt

      

it follows that

2

21 d

2 d
0t t x L

n dx
t

   (10)

Hence from (8)-(10) we get

2

2 2

2 2 2

| |2 2 22

0

2
2 2 2

d
d ( )d d

d

d 1 1
0.

d 2 2 2

E

x xxL L

x xL L L

E H E n E x f x
t

H
n n

t

 



   



  

 
  

 

  

Letting

2

2 2

2 2 2

| |2 2 22

0

2
2 2 2

( ) d ( )d d

2 2
,

1 1

2

E

x xxL L

x xL L L

t E H E n E x f x

H
n n

 



   

  

  
H

It follows that

( ) (0).t H H
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Lemma 3 (Gagliardo-Nirenberg inequality [10]). Assume that ( )q nu L  , ( )m r nD u L  ,

1 , ,0q r j m     , we have the estimations

1

( )( ) ( )
,q np n r n

j m

LL L
D u C D u u

 


 

where C is a positive constant, 0 1
j

m
   ,

1 1 1
(1 ) .

j m

p n r n q
 
 

     
 

Lemma 4. Suppose that

(i) 12 1
0 0 0( ) ( ), ( ) ( ), ( ) ( ).x H n x HE x H    

(ii) ( ) ( ), | ( .) |f C f M     Where 0, 0 4.M   

Then we have

2 2 2 2 2

2 2 2 2 2
.x xx x xL L L L L

E E n n C  

Proof. By Hӧlder inequality, Young inequality, there holds 

2 4 2 4

2 2 2 4
.

4

1
L L L L

n E dx n E n E   (11)

using Gagliardo-Nirenberg inequality and Young inequality, we write

4 2 2 2

4 3 2
.

1

2
x xL L L L

E E CC E E   (12)

And noticing that ( ) ( ), | ( ,) |f C f M     we get

2 2

2(
| |

1
|

0 0

)
|

( )d d d d | |
1

d
E E M

f x M x xE   


  
     (13)

Using Gagliardo-Nirenberg inequality and noticing that 0 4  , we write

2 2 2

3 4
2( 1) 2

2
2

2| |
1

.
2

xxLx Lx L

M H
dx C EE E E C

 





   

  (14)

Note that from Lemma 2 and eq. (11)-(14) , one has

2 2 2 2 2

2 2
2 2 2 2 21 1 1

(0) .
2 2 4 2 2

x xx x xL L L L L

H H
E E n n C  H

we thus get Lemma 4.

Lemma 5. Suppose that the conditions of Lemma 4 are satisfied. Then we have

2 1 1 .t H Ht tH
E n C    
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Proof. Taking the inner product of eq. (4) and  , eq. (5) and  , eq. (6) and  , it follows

that

   2 2, (| | ) ,t xx xxxxiE E H E nE f E E      (15)

 , 0t xxn    (16)

 2 2| | , 0.t xxn H n E     (17)

where  2
0, i H   ( 1, , )i N  , 1( , , )N    .

By Hӧlder inequality and Gagliardo-Nirenberg inequality, it follows from eq. (15) that 

         

       

2 2 2 2 4 2( 2 1)

2 2

4 2 2

2 2 2 22 2 2 2

2
0

2 2

2 2

2 12

1 3 1 3
1

4 4 4 4

, , , , (| | ) ,

, , , (| | ) ,

t xx xxxx

xx xx xx

xx xx xxL L L L L L L L L

xx x x xL L L L L L L L L

H

L

E E H E nE f E E

E H E nE f E E

E H E n E M E

C n n E E E EC

C

C C





 







        

       

   

    

   

  

 

(18)

Using Hӧlder inequality, from eq.(16), there is 

      2 2 1
0

, , ,t xx x x x xL L H
n C          (19)

From eq. (17) and Hӧlder inequality, we have 

       

     

2 2 2 2 24

2 22 2 2

1
0

2 2

2 2

22

1 3

2 2

, , , | | ,

, , | | ,

.

t xx

x x

x xL L L L L L

x xL L L L L

H

n H n E

n H n E

n H n E

E E

C

C C C

   

 





  

  



 

  

  



 



(20)

Hence from(18)-(20), one obtain Lemma 5.

3. The existence of generalized solution

In this section, we formulate the proof of Theorem 1. First we give the definition of

generalized solution for problem (4)-(7).

Definition 1. The functions 1, 22( , ) ( ; ) ( ; ),E x t L H W H      

1, 11( , ) ( ; ) ( ; ),n x t L H W H       1 , 11( , ) ( ; ) ( ; )x t L H W H        are called

generalized solution of problem (4)-(7), if they satisfy the following integral equality
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     

   

2

2

, , ,

, (| | ) , , 1, , ,

mt mxx mxx xx

m m

iE E H E

nE f E E m N

  

 

 

   

   , , 0,t x xn    

       2 2, , , | | , 0.t x xn H n E       

with initial data

0 0 0 0 0 0| ( ), | ( ), | ( ),t t tE E x n n x x     

Next, we give two lemmas recalled in [11].

Lemma 6. Let 0 1, ,B B B be three reflexive Banach spaces and assume that the embedding

0B B is compact. Let

0 1

0 1 0 1((0, ); ), ((0, ); ) , ,1 , .p pV
W V L T B L T B T p p

t

 
        

 

W is a Banach space with norm

0 1
0 1((0, ); ) ((0, ); )

.p ptW L T B L T B
V V V 

Then the embedding 0 ((0, ); )pW L T B is compact.

Lemma 7. Let  be an open set of n and let , ( ), 1p ng g L p     , such that

( )
a.e. in and .pL

g g g C  
  

Then g g  weakly in ( )pL  .

Now, one can estimate the following theorem.

Theorem 2. Suppose that

(i) 12 1
0 0 0( ) ( ), ( ) ( ), ( ) ( ).x H n x HE x H    

(ii) ( ) ( ), | ( .) |f C f M     Where 0, 0 4.M   

Then there exists global generalized solution of the initial value problem (4)-(7).

2

1

1

1, 2

1, 1

1, 1

( , ) ( ; ) ( ; ),

( , ) ( ; ) ( ; ),

( , ) ( ; ) ( ; ).

E x t L H W H

n x t L H W H

x t L H W H

    

    

    

 

 

 

 

 

 

Proof. By using Galerkin method, choose the basic periodic functions { ( )}j x as follows:

2
0( ) ( ), ( ) ( ), 1, 2, , .j j j jx x x H j l        

The approximate solution of problem (4)-(7) can be written as
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1 1 1

( , ) ( ) ( ), ( , ) ( ) ( ), ( , ) ( ) ( ),
l l l

l l l
j j j j j j

j j j

l l lx t t x n x tE t x x t t x    
  

    

where

   1 1, , , ( ) ( ), , ( ) ,l l l
j
l l

j jN N
lE E E t t t    

and  is a 1-dimensional cube with 2D in each direction, that is, { || | 2 }.x x D   According

to Galerkin's method, these undetermined coefficients ( )j
l t , ( )j

l t and ( )j
l t need to satisfy the

following initial value problem of the system of ordinary differential equations

     
   

2

2

, , ,

, (| | ) , , 1, , ,

l l l
mt mxx mxx xx

l l l
m m

iE E H E

nE f E E m N

  

 

  

 

 

   
(21)

   , , 0, 1, 2, , ,l l
t x xn l        (22)

       2 2, , , | | , 0.l l l l
t x xn H n E           (23)

with initial data

0 0 0 0 0 0| ( ), | ( ), | ( ),l l l l l l
t t tE E x nn x x     (24)

Suppose

2 1 1

0 0 0 0 0 0( ) ( ), ( ) ( ), ( ) ( ), .H H Hl l lE x E x x n x x x ln     

Similarly to the proof of lemma 1-5, for the solution ( , )lE x t , ( , ),ln x t ( , )l x t of problem (21)-

(24), we can establish the following estimations

2 1 1
,l l l

H HH
E n C   (25)

2 1 1
.l l l

t t tH H H
E n C

  
   (26)

where the constant C is independent of l and D . By compact argument, some subsequence of

 , ,l l lE n  , also labeled by l , has a weak limit  , ,E n  . More precisely

2in ( ; ) weakly star,lE E L H   (27)

1in ( ; ) weakly star,ln n L H   (28)

1in ( ; ) weakly star.l L H     (29)

Eq. (26) imply that

2in ( , ) weakly star,l
t tE E L H    (30)



81

1in ( , ) weakly star,l
t tn L Hn    

1in ( , ) weakly star.l
t t L H   

Moreover, let us note that the following maps are continuous.

1 42 2( ) ( ), ,H L u u  

1 22 2 2 2( ) ( ) ( ), ( , ) .H L L u v uv    

It then follows from eq. (27) and (28) that

2 2in ( , ) weakly star,l w L LE    (31)

2in ( , ) weakly star.l ln E z L L   (32)

First, we prove
2

w E . Let  be any bounded subdomain of  . We notice that

42the embedding ( ) ( ) is compact,H L  

and for any Banach space X ,

2the embedding ( , ) (0, ; ) is continuous.L X L T X  

Hence, according to eq.(27), (31) and Lemma 6, applied to 2
0 ( ),B H  4 2

1( ), ( )B L B H     ,

and says that some subsequence of |lE  (also labeled by l ) converges strongly to |E  in

2 4(0, ; ( ))L T L  . So we can assume that

2 4strongly in (0, ; ( )),l
locE E L T L  (33)

and thus

a.e. in [0, ] .lE E T 

Then, using Lemma 7 and eq. (31) imply that
2

w E .

Second, we prove z nE . Let  be some test function in 2 1(0, ; ),L T H supp    .

   
0 0 0

( ) .
T T T

l l l l ln E nE dxdt n E dxdt n n E dxdtE  
 

         

On one hand

  2 42 2 4 (0, ; ( ))(0, ; ( )) (0, ; ( ))0
.

T
l l l l

L T LL T L L T L
n E E dxdt n E E 

  
    ‖ ‖

Since  is bounded, we deduce from eq. (28) and (33) that

 
0

0 ( ).
T

l ln E E dxdt l


    

On the other hand, let us note that 1 2(0, ; )E L T L  . In fact
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1 2 2 4 2 4(0, ; ) (0, ; ) (0, ; )
.

L T L L T L L T L
E E   ‖ ‖

Therefore we deduce from eq. (28) that

0
( ) 0 ( ).

T
ln n E dxdt l


   

Thus l ln E nE in 2 1(0, ; )L T H  . So z nE .

Hence taking l  from eq. (21)-(24), by using the density of j in 2
0 ( )H  we get the

existence of local generalized solution for the periodic initial value problem (4)-(7). letting

D  , the existence of local solution for the initial value problem (4)-(7) can be obtain. By the

continuation extension principle and a prior estimates, we can get the existence of global

generalized solution for problem (4)-(7).

We thus complete the proof of Theorem 2. Hence one can get Theorem 1.

Conclusion

This paper considers the existence of the generalized solution to the initial vale problem for

a generalized Zakharov equation by a priori integral estimates and Galerkin method, one has the

existence of the global generalized solution to the problem.

Discussion

One can regard (1)-(2) as the Langmuir turbulence parameterized by (0 1)H H  and

study the asymptotic behavior of the systems (1)-(2) when H goes to zero.
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